Probing EWIMPs with Drell-Yan process at 100 TeV colliders

Yohei Ema

DESY & KEK

Mini-Workshop on Theory in HEP program @ IAS Hong-Kong 10.01.2019

Based on 1810.07349 with S. Chigusa and T. Moroi (Tokyo U.)

Introduction

ElectroWeakly Interacting Massive Particle (EWIMP)

- EWIMP: massive particles charged under $SU(2)_L$.
- Motivated by many Standard Model extensions.
- Good candidate for Dark Matter.

Extensive searches being performed.

-MSSM

- Higgsino: SU(2) doublet

 $m\simeq 1\,{
m TeV}\,$ for thermal relic.

e.g. "natural SUSY" [Baer+ 12; ...]

- Wino: SU(2) triplet

 $m\simeq 3\,{
m TeV}\,$ for thermal relic.

e.g. "mini-split" [Arvanitaki+ 12; ...]

-Minimal DM

[Cirelli+ 05, 07]

- 5-plet fermion

 $m\simeq 10\,{
m TeV}$ for thermal relic.

- 7-plet scalar $m\simeq 25\,{
 m TeV}$ for thermal relic.
 - * additional stabilization for 7-plet [Del Nobile+ 15]

Conventional search

DM detection

direct detection

wino, MDM: well within future prospect, higgsino: under neutrino floor

indirect detection

wino, MDM: strongly constrained

subject to astrophysical uncertainties

Collider search

disappearing charged track

wino: strong way to probe

depends strongly on lifetime, or mass difference

mono-X search

* Higgsino is basically more difficult to probe.

Collider "indirect" search

• Today's topic: Drell-Yan process @ 100 TeV hadron collider.

* Focus on $ee, \mu\mu$ channels in this talk.

[See also Harigaya+ 15; Matsumoto+ 17, 18; Di Luzio+ 18]

Not directly produce EWIMPs = "indirect" search.

X Have to deal with backgrounds and systematics.

Offers complementary information, to say the least.

1. Introduction

2. EWIMP effect on Drell-Yan

3. Detection reach

4. Summary

1. Introduction

2. EWIMP effect on Drell-Yan

3. Detection reach

4. Summary

Oblique correction

• EWIMP acts as an oblique correction:

• We take into account the full contribution.

important to distinguish from systematics (discussed later).

<u>c.f.</u> $S, T, U, (W, Y, \cdots)$ for

or
$$\sqrt{s} \ll m_{\mathrm{NP}},$$

and the gauge coupling running for $\sqrt{s} \gg m_{\mathrm{NP}}$.

[Alves+ 14; Gross+ 16; ...]

[Peskin&Takeuchi 90,92; Barbieri+ 04; ...]

EWIMP effect

• Define the EWIMP correction

$$\delta_{\sigma}(m_{ll}) \equiv rac{d\sigma_{
m EWIMP}/dm_{ll}}{d\sigma_{
m SM}/dm_{ll}}$$
 for each parton.

• Plot of $\delta_{\sigma}(m_{ll})$ for $m_{\rm EWIMP} = 1 \,{\rm TeV}$:

• Correction peaked at $m_{ll}/2 = m_{\rm EWIMP} \rightarrow$ suitable for 100 TeV collider!

1. Introduction

2. EWIMP effect on Drell-Yan

3. Detection reach

4. Summary

Event generation and model

• Experiment not performed yet.

Events generated by Monte-Carlo (MadGraph5 & Pythia8 & Delphes3) $\mathcal{L} = 30 \text{ ab}^{-1}, 500 \text{ GeV} < m_{ll} < 15 \text{ TeV}, 145 \text{ bin}$

* NLO: event # $\rightarrow \times 2$, detector: $\times 0.8$ and smear momentum.

• Theoretical prediction also computed by MC.

Event #:
$$\tilde{x}_i(\mu) = \sum_{\substack{m_{ll}^{(i)} < m_{ll}^{\text{obs}} < m_{ll}^{(i+1)}}} \left[1 + \mu \, \delta_\sigma(m_{ll}^{\text{true}}) \right]$$
 for *i*-th bin,

where m_{ll}^{obs} : observed invariant mass (simulated by Delphes), and m_{ll}^{true} : true invariant mass (read from MadGraph output).

* Pure SM limit: $\mu = 0$, full EWIMP effect: $\mu = 1$.

Fitting based approach

• Many sources for systematic uncertainties:

luminosity, beam energy, PDF choice, factorization/renormalization scale, ...

$$\tilde{x}_i(\mu, \theta) = \tilde{x}_i(\mu) f_{\text{sys},i}(\theta), \quad f_{\text{sys},i}(0) = 1.$$

- Variation of nuisance parameters = systematics uncertainties.
- For illustration, we take in the following

$$f_{\text{sys},i} = e^{\theta_1} (1 + \theta_2 \, p_i) p_i^{(\theta_3 + \theta_4 \ln p_i + \theta_5 \ln^2 p_i)}, \quad p_i = 2m_{ll,i} / \sqrt{s},$$

that is known to work for LHC. [CMS collaboration 08]

* This choice is just an example.

Fitting based approach

Define test statistics as

$$q_0 \equiv -2 \ln rac{L(oldsymbol{x}; \mu = 0, \hat{oldsymbol{ heta}})}{L(oldsymbol{x}; \hat{\mu}, \hat{oldsymbol{ heta}})},$$

where

$$L(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\theta}) \equiv \left(\prod_{i} \exp\left[-\frac{(x_{i} - \tilde{x}_{i}(\boldsymbol{\mu}, \boldsymbol{\theta}))^{2}}{2\tilde{x}_{i}(\boldsymbol{\mu}, \boldsymbol{\theta})}\right]\right) \left(\prod_{\alpha} \exp\left[-\frac{\theta_{\alpha}^{2}}{2\sigma_{\alpha}^{2}}\right]\right),$$

likelihood in signal region our knowledge on systematics

 $\hat{\boldsymbol{\theta}}$: maximize $L(\boldsymbol{x}; \mu = 0, \boldsymbol{\theta}), (\hat{\mu}, \hat{\boldsymbol{\theta}})$: maximize $L(\boldsymbol{x}; \mu, \boldsymbol{\theta}).$

 $\sqrt{q_0} = n$ corresponds to $n\sigma$ discovery. [WIlk 38]

- Estimated the variance σ by varying one of the followings:
 - luminosity: $\pm 5\%$ - renormalization scale: 2Q, Q/2
 - beam energy: $\pm 1\%$
- - factorization scale: 2Q, Q/2
 - PDF choice

* They are well fitted by our choice of $f_{\text{sys},i}$.

[Cowan+ 10]

Result

$$\mathcal{L} = 30 \, \mathrm{ab}^{-1}$$

$$\mathcal{L} = 30 \, \mathrm{ab}^{-1}$$

• Higgsino:

	mono-jet	disappearing track	indirect
5σ	$0.2 - 0.5 \mathrm{TeV}$	0.9 - $1.3\mathrm{TeV}$	$0.7 (-1.2) \mathrm{TeV}$
95% C.L.	$0.9 - 1.4 \mathrm{TeV}$	$1.1 \text{-} 1.5 \mathrm{TeV}$	$1.3(-2.0) \mathrm{TeV}$

Indirect method can be strongest!

• Wino:

	mono-jet	disappearing track	indirect
5σ	$0.5 - 1.0 \mathrm{TeV}$	3.6 - $5.4 \mathrm{TeV}$	$1.0(-1.6) \mathrm{TeV}$
95% C.L.	$1.5 - 2.0 \mathrm{TeV}$	$4.5-6.6\mathrm{TeV}$	$1.8(-2.7)\mathrm{TeV}$

Disappearing track seems best way, indirect method still provides complementary information.

* Mono-jet and disappearing track taken from 1805.00015.

Contribution from each bin

- Peak is the dominant contribution.
- Peak is not absorbed by systematics.

1. Introduction

2. EWIMP effect on Drell-Yan

3. Detection reach

4. Summary

Summary

- Introduced "indirect" method to probe EWIMPs.
- Study prospect at future 100 TeV hadron collider.
- Indirect method can be the strongest probe for Higgsino.
- Provides complementary information for other EWIMPs.
- Reducing systematic uncertainties has a significant effect.

	Higgsino	Wino	5-plet	7-plet
5σ	$0.7\mathrm{TeV}$	$1.0\mathrm{TeV}$	$2.6\mathrm{TeV}$	$1.2\mathrm{TeV}$
5σ (opt.)	$1.2\mathrm{TeV}$	$1.6\mathrm{TeV}$	$3.9\mathrm{TeV}$	$2.2\mathrm{TeV}$
95% C.L.	$1.3\mathrm{TeV}$	$1.8\mathrm{TeV}$	$3.9\mathrm{TeV}$	$2.1\mathrm{TeV}$
95% C.L. (opt.)	$2.0\mathrm{TeV}$	$2.7\mathrm{TeV}$	$6.2\mathrm{TeV}$	$3.6\mathrm{TeV}$

Conventional DM search

DM direct detection

[Hil and Solon 13; Hisano+ 15; XENON collaboration 18; ...]

Wino, MDM: well within the future detection reach.

K Higgsino: below the neutrino floor, difficult to detect.

(assuming mass splitting (pseudo Dirac) to avoid Z-boson exchange)

DM indirect detection

[Fermi-LAT collaboration 15; HESS collaboration 16,18; ...]

Wino, MDM: severely constrained. (or even excluded for cuspy DM profile)

K Higgsino: difficult to probe due to smaller coupling.

V Uncertainties of astrophysical origin, e.g. DM profile.

EWIMP must be the dominant component of DM for both methods.

Conventional collider search

Disappearing charged track:

- For pure wino/higgsino: $m_{\tilde{W}} < 460 \,{
 m GeV}, \ m_{\tilde{h}} < 152 \,{
 m GeV}.$ [Atlas 17; CMS 18]
- Wino thermal relic can be well covered by future colliders.

strongly depends on lifetime, or mass difference.

* higgsino: dim-5, and wino: dim-7 in terms of EFT.

Mono-X search:

Signal and background: similar distribution

e.g. no significant bound on higgsino at LHC14 [Baer+ 14; ...]

Collider: mono-jet

[Han+ 18]

Collider: disappearing track

[Han+ 18]

DM direct detection

DM indirect detection

dwarf spheroidal galaxy [Fermi-LAT collaboration 15]

* Einasto (cuspy) profile is assumed for HESS.

Mass determination

